
- 1 of 23 -

Title: Converting SPARQL to SQL

Author: Fred Zemke
Date: October 12, 2006

References
[SPARQL CR] “SPARQL query language for RDF”, Candidate Recommendation,

http://www.w3.org/TR/2006/CR-rdf-sparql-query-20060406/

[rq24] “SPARQL query language for RDF”, Editor’s draft,
http://www.w3.org/2001/sw/DataAccess/rq23/24
(the version I printed was dated 2006/06/12)

[First attempt] Fred Zemke, “An attempt at a formal semantics for SPARQL”

[Constructive/destructive]
Fred Zemke, “SPARQL semantics: constructive or destructive?”

[Constructive mapping semantics]
Fred Zemke, “Constructive mapping semantics for SPARQL”

[SPARQL to trees] Fred Zemke, “Converting SPARQL syntax to trees”

1. Introduction
This paper continues the work begun in [SPARQL to trees] and [Constructive mapping seman-
tics]. Those papers proposed a formal semantics for SPARQL in two phases:

1. [SPARQL to trees] shows how to convert SPARQL syntax to a tree representation, and

2. [Constructive mapping semantics] provides the semantics for the trees.

There are minor, resolvable differences between the tree representations in those two papers.

This paper shows how to convert a SPARQL query tree (generated according to the algorithm of
[SPARQL to trees]) to an SQL statement, in effect making SQL the pseudocode or metalanguage
for defining the semantics of SPARQL. I believe and intend that

[SPARQL to trees] + [Constructive mapping semantics]

is equivalent to

[SPARQL to trees] + this paper.

- 2 of 23 -

Converting SPARQL to SQL

2. Preliminaries

2.1 Terminology
I have found the following terminology convenient:

bindable: a variable or blank node identifier

graph selector: the VarOrBlankNodeOrIRIref that is the first argument of a GraphGraphPattern
(rule [25]). Elsewhere I have suggested that permitting a blank node identifier as a graph selector
is inconsistent with using entailment as a general framework. Andy Seaborne has implemented
this suggestion (http://lists.w3.org/Archives/Public/public-rdf-dawg/2006OctDec/0055.html item
5). However, the work in this paper is independent of that question.

mandatory pattern: the first operand of an OPTIONAL

supplementary pattern: the second operand of an OPTIONAL

constant pattern: a pattern having no bindables. A constant pattern has a single solution with no
bindings, if the constant pattern matches; otherwise it has no solution. The empty pattern is a spe-
cial case of a constant pattern. A use of nonempty constant patterns is shown by the query

WHERE { ?g GRAPH { :s :v :n } }

which asks which named graphs contain the triple.

2.2 Font conventions
The algorithm will construct a lot of SQL text. Constructed SQL text will be shown on indented
monospace lines. SQL text that is shown without italics should be taken literally. SQL text that is
italicized represents a point where text substitution occurs; the italicized variable is the name of
previously constructed text. Frequently the substitution text is the result of a function; in that
case, the function name is italicized but the function arguments typically are not.

2.3 Graphs
I assume that graphs are stored as relational tables with three columns, which will be called Sub-
ject, Verb and Object in this paper. I assume that (Subject, Verb, Object) constitutes the primary
key (this insures that the graph is a mathematical set, with no duplicates, and no row/column
intersection is null).

I also assume that there is a function that maps graph names (IRIs) to table names. This function
also maps the default graph to a table name.

Alternatively, all known graphs can be stored in a single table, with a fourth column for the graph
IRI. With this technique, the primary key needs to include the graph IRI column as well as the
Subject, Verb and Object.

- 3 of 23 -

Converting SPARQL to SQL

I assume that all three or four columns are stored as character strings, perhaps a large VARCHAR
type, or even CLOB. Let CharType be the syntax for declaring this type in SQL.

2.4 Blank nodes in graphs
I assume that all blank nodes in graphs are represented by blank node identifiers (character
strings) that are unique across all graphs in the query. In the event that the graphs in the query
were not constructed according to that principle, it can be imposed after the fact in SQL using the
following expression syntax:

CASE WHEN value LIKE '_:%'
 THEN '_:' || 'GraphId(IRI)' || '_'
 || SUBSTRING (value FROM 3)
 ELSE value END

where GraphId is a function that maps the graph’s IRI name to a unique identifier containing no
underscore.

This massages all blank node identifiers so that they begin with a unique identifier for the graph
that contains them, while passing any IRI values through unchanged. Thus it becomes impossible
for two blank nodes in separate graphs to be equal.

2.5 Default graph assignment
[Constructive mapping semantics] defines the notion of a path through a tree, and then construc-
tions built on those paths. A construction consists of two functions, one which assigns a default
graph to each activated node of a tree, and one which assigns a mapping (solution) to each acti-
vated node.

In this paper, I found it possible to isolate the default graph assignment from the path by making
the default graph assignment a total function on the tree. In this way, default graph assignments
can be constructed prior to constructing solutions (instead of integrating the construction of the
default graph assignment with the construction of the solution, as in [Constructive mapping
semantics]).

Formally, let D = { G, (<u1, G1>), . . . , (<ug>, Gg) } be an RDF dataset as defined in [rq24] sec-
tion 9 “RDF dataset”. I assume that the default graph G has an IRI u0, purely as a device to refer-
ence the default graph (this does not alter the fact that the IRI of the default graph is not visible in
the query unless the default graph is also an explicitly named graph).

I define a default graph assignment as a function DGA from a tree Tree to the set { u0, . . ., ug }
satisfying the following properties:

1. If Node is the root node of Tree, then DGA(Node) = u0.

2. If Node is a non-root node of Tree, let Parent be the parent of Node.

a) If Parent is a GRAPH node, then:

- 4 of 23 -

Converting SPARQL to SQL

i) If the first child of Parent (the graph selector) is an IRI and Parent = ui for
some i, then DGA(Node) = ui.

ii) If the first child of Parent is a bindable, then DGA(Node) = ui for some i
between 1 and g.

[NOTE to the proposal reader: Andy Seaborne’s
announced change http://lists.w3.org/Archives/Pub-
lic/public-rdf-dawg/2006OctDec/0055.html item 5
implies that the the preceding rule can be simplified
to “If the first child of Parent is a variable, ...”.]

b) Otherwise, DGA(Node) = DGA(Parent)

The set of all default graph assignments of a tree is finite, and may be enumerated by walking
down the tree from root to leaves. Whenever a GRAPH node with a non-constant graph selector
is encountered, it is necessary to explode the number of default graph assignments by the number
of named graphs. If there are no non-constant graph selectors, then there is only one default graph
assignment.

To handle some corner cases, it may happen that

1. A SPARQL query contains a GraphGraphPattern with an IRI as the graph selector, but
there is no named graph associated with that IRI.

2. A SPARQL query contains a GraphGraphPattern with a bindable as the graph selector, but
there is no named graph at all.

In these cases, it is impossible to create a default graph assignment. I propose that these cases
should be treated as syntax errors, since they cannot match. However, if it is desired to permit
these cases, then the algorithm in this paper can be fixed by assuming an empty graph with some
IRI that is distinct from all ui. A query performed on an empty graph will have no matches.

Let d be the number of default graph assignment of Tree. Let DGA1, . . ., DGAd be those default
graph assignments.

2.6 Overall structure of the generated SQL query
I found it convenient to create an SQL subquery for every default graph assignment and every
interior node of the tree. The bulk of the algorithm describes how to construct such subqueries.

The generated SQL is admittedly verbose, and the reader will probably observe less verbose ways
of expressing every example presented in the paper. The purpose in this paper is merely to
present a completely general algorithm, not an optimal one.

The WITH clause of SQL may be used to assign an identifier to a subquery. Then the subquery
can be referenced by its name in FROM clauses later in the overall query. For example

WITH T1 AS (SELECT C1, K1 FROM Table1 WHERE K1 > 20),

- 5 of 23 -

Converting SPARQL to SQL

 T2 AS (SELECT Table2.C2 FROM Table2, T1
 WHERE T1.K1 = Table2.K2)
SELECT *
FROM T2

This example defines T1, then defines T2 using the definition of T1, and finally performs a query
against T2.

The WITH clause simplifies the proposal in this paper. However, the WITH clause is not a man-
datory part of the SQL standard. When using an SQL implementation that does not support the
WITH clause, the same effect can be achieved by nesting subqueries in-line. The example above
is equivalent to

SELECT *
FROM (SELECT Table2.C2
 FROM Table2, (SELECT C1, K1
 FROM Table1
 WHERE K1 > 20) AS T1
 WHERE T1.K1 = Table2.K2)

2.7 Node numbering
I assume some enumeration {Node1, Node2, . . ., Noden} of the nodes of Tree, with the property
that if Nodei is a proper descendant of Nodej, then i > j. Thus the root is necessarily Node1, and
other nodes can be numbered by walking down the tree in some fashion. The subqueries to be
generated will be arranged in descending node number order (placing the subquery for the root
last) so that the logical precursors to each subquery will defined earlier in the WITH clause.

Default graph assignments are placed in an arbitrary order, since no default graph assignment
depends on another.

2.8 Node names
Every pair (DGAi, Nodej) is given a node name. The node name is used in two forms, as an SQL
identifier and as a SQL character string literal:

1. The identifier form of the node name is used as the name of the SQL subquery that discov-
ers the solutions of Nodej using DGAi as the default graph assignment.

2. The character string literal form of the node name is used as a value in the result of a query
to record which subquery discovered the solution.

The character string literal form of the node name is defined in this section, the identifier form in
the next. If i is a positive integer, let lit(i) be the shortest SQL literal for i. For example, ‘1’ is the
shortest literal for 1, and ‘01’ is not. The SQL character string literal NodeName(DGAi, Nodej) is

'D' || lit(i) || 'N' || lit(j)

- 6 of 23 -

Converting SPARQL to SQL

For example, 'D1N1' is the node name of the root node with the first default graph assignment.

2.9 SQL identifiers
The generated SQL query will require a number of SQL identifiers. For this purpose, I define a
function Id that generates SQL identifiers from pieces of SPARQL query text.

variables: rule [90] VARNAME is case sensitive, whereas SQL regular (unquoted) identifiers are
not. I haven’t checked, but I also believe some of the characters of VARNAME are not permitted
in SQL regular identifiers. Fortunately, there is a workaround, quoted identifiers, which are sur-
rounded by double quotes; any embedded double quotes are handled by repetition (thus """" is an
SQL quoted identifier whose value is a single double quote). Let Id be a function that maps a
VARNAME to the corresponding quoted SQL identifier.

blank node identifiers: I assume that the domain of Id also includes SPARQL text conforming to
rule [70] BLANK_NODE_LABEL. The mapping is to a quoted identifier that begins with _: and
suppresses any whitespace that might be present between _: and NCNAME. For example, Id(_:a)
= "_:a".

table names: Every graph is named by an IRI. I assume Id(IRI) is an SQL identifier that names
the table that stores the graph referenced by IRI.

query names: every default graph assignment DGAi and node Nodej and has a query name,
called Id(DGAi, Nodej). This is the SQL identifier whose spelling is the same as the value of
NodeName(DGAi, Nodej). For example, "D1N1" is the query name of the root node using the
first default graph assignment.

2.10 Paths
Every subquery will have as its first result column a column called "::path". This column will
contain the concatenation of the character string form of every node name that figured in the gen-
eration of a solution.

The path column is used to provide the counting semantics that I have advocated. For example,
given a pattern

{ { ?x :v _:n } UNION { ?x :v _:n } }

every solution of the first branch of the UNION is also a solution of the second branch. The SQL
query generated by this proposal will distinguish duplicate solutions by means of the path column.

- 7 of 23 -

Converting SPARQL to SQL

A solution that arises from the first branch will have a different path from a solution of the second
branch. The tree for this example is

Node numbers are shown in parentheses. There is only one default graph assignment, since there
is no GRAPH node. No subqueries are generated for the leaves of the tree. The first subqueries
to be generated are the TRIPLE nodes, which have "::path" columns whose values are 'D1N4' and
'D1N9' respectively. The paths at their parents, the internal GROUP nodes, are 'D1N4D1N3' and
'D1N9D1N8' respectively. The UNION node forms the SQL UNION of these two streams, pro-
ducing rows whose path is either 'D1N4D1N3D1N2' or 'D1N9D1N8D1N2'. Thus the history of
each solution can be found in the "::path" column. This will enable us to use the SQL DISTINCT
operator to factor out duplicates due to the blank node identifier _:n while retaining duplicates due
to the UNION. At the very end, the path column is projected away.

2.11 Solution tables
The result of evaluating a subpattern is a table whose rows represent solutions of the subpattern.
The first column of the table is always named "::path", and records the path through the tree that
was used to derive a particular solution. The other columns are named after the bindables that
appear in the subpattern. In the case of a constant subpattern, the only column is "::path"; the
presence of a row indicates that the constant subpattern matched.

The value of a column other than "::path" may be null; this indicates that there is no binding for
the corresponding bindable.

When one pattern is nested within another pattern, the larger pattern may contain bindables not
found in the nested pattern. In that case, the SQL query for the nested pattern can be effectively
extended with additional null columns for any bindables found in the containing pattern. The syn-
tax to create such a column is

CAST (NULL AS CharType) AS Id(w)

where w is the bindable to be added to the solution table.

GROUP (1)

UNION (2)

GROUP (3) GROUP (8)

TRIPLE (4) TRIPLE (9)

?x (5) :v (6) _:n (7) ?x (10) :v (11) _:n (12)

- 8 of 23 -

Converting SPARQL to SQL

The algorithm constructs such widened queries as necessary. There is no conceptual difference
between a row with a null value in a column, and a row that lacks that column altogether.

2.12 Glossary of symbols

3. Transformation of nodes to SQL subqueries
This section is organized around the various kinds of nodes in a tree. For most nodes, we can treat
the default graph assignment as a constant, DGA.

3.1 TRIPLE
If Node is a TRIPLE node of Tree, let the three children be Nodesubject, Nodeverb and Nodeobject.

Form the character string:

NodeName(DGA, Node) AS "::path"

symbol meaning

g number of named graphs

Tree the tree representation of a SPARQL query

n number of nodes in Tree

Node1, ... Noden nodes of Tree

d number of default graph assignments

DGA1, ..., DGAd default graph assignments

NodeName function to generate an SQL character string literal from a default graph
assignment DGAi and a node Nodej

Id function to generate an SQL identifier from any of the following:
1. a bindable
2. a graph name IRI
3. a default graph assignment DGAi and a node Nodej

v a variable

w a bindable

SQ function that generates an SQL query for a particular default graph assign-
ment DGAi and a particular Nodei. The result of SQ is the solution table
for the subpattern represented by Nodei with default graph assignment
DGAi.

- 9 of 23 -

Converting SPARQL to SQL

Let B be the set of bindables in Nodesubject, Nodeverb and Nodeobject. For each element w of B,
form the following strings:

if w is Nodesubject , then

Subject AS Id(w)

else if w is Nodeverb , then

Verb AS Id(w)

else

Object AS Id(w)

For example, the triple pattern ?x :v ?x only has one bindable, and only generates

Subject AS "x"

because the final “else” is never reached.

Let TripleSelectList consist of a comma-separated list of the preceding strings. Note that if there
are no bindables, there is still a result column for "::path". The generated query in this case will
return 1 row if the triple is found in the graph, otherwise it will return no rows. (The query can
return at most one row because of the primary key on the Subject, Verb and Object columns of the
graph’s table.)

Define six predicates as follows:

If Nodesubject is an IRI or literal, let Predsubject be

Subject = Nodesubject

If Nodeverb is an IRI or literal, let Predverb be

Verb = Nodeverb

If Nodeobject is an IRI or literal, let Predobject be

Object = Nodeobject

If Nodesubject and Nodeverb are the same bindable, let Predsv be

Subject = Verb

If Nodesubject and Nodeobject are the same bindable, let Predso be

Subject = Object

If Nodeverb and Nodeobject are the same bindable, let Predvo be

Verb = Object

- 10 of 23 -

Converting SPARQL to SQL

Not all of these predicates will be defined. Let TriplePred be the logical conjunction of those that
are defined (i.e., joined by AND). If none of the predicates is defined, let Pred be 1=1.

Then SQ (DGA, Node) is

Id(DGA,Node) AS
(SELECT TripleSelectList
 FROM Id (DGA(Node))
 WHERE TriplePred)

For example, node 4 above is the triple pattern

?x :v _:n

and is converted to

DIN4 AS
(SELECT 'D1N4' AS "::path", Subject AS "x", Object as "_:n"
 FROM GraphTable
 WHERE Verb = '//http:shenme.difang/v')

assuming that the default graph is stored in GraphTable and the prefix ':' is mapped to
'http://shenme.difang/'

3.2 JOIN
If Node is a JOIN node of Tree, let its children be Ch1, ..., Chc.

Form the character string

 Id(DGA,Chi)."::path"

|| ...
|| Id(DGA,Chc)."::path"

|| NodeName(DGA, Node) AS "::path"

For each bindable w appearing in any descendent of Node, let i be the lowest index such that w is
in Chi. Form the strings:

Id(DGA,Chi).Id(w)

Let JoinSelectList be a comma-separated list of the preceding strings; if there is no bindable, there
will still be at least a result column called "::path".

For every bindable w in any of the children, if w occurs in both Chi and Chj where i <> j, let
Pred(w, i, j) be

(Id(DGA,Chi).Id(w) IS NULL

 OR Id(DGA,Chj).Id(w) IS NULL

 OR Id(DGA,Chi).Id(w) = Id(DGA,Chj).Id(w))

- 11 of 23 -

Converting SPARQL to SQL

(That is, two solutions can join if they are equal on those bindables in the intersection of their
domains.)

Let JoinPred be the logical conjunction of all defined Pred (w, i, j). If there are none, let JoinPred
be

1=1

SQ(DGA, Node) is

Id(DGA, Node) AS
(SELECT JoinSelectList
 FROM Id(DGA,Ch1), . . ., Id(DGA,ChC)

 WHERE JoinPred)

Note that in the event that one of the children is a constant pattern that does not match, then the
result above will also be empty, because the cross product in the FROM clause will be empty. If
all the children are constant patterns that match, then the FROM clause will form the cross prod-
uct of tables of 1 row each, resulting in a single row.

For example, consider the basic graph pattern

{ ?x :v1 _:n . _:n :v2 ?y }

The nodes in the tree are

Node1: the root node, a GROUP node

Node2: a JOIN node, the child of the root node

Node3 and Node4, the two TRIPLE nodes that are the children of Node2.

There is only one default graph assignment. The queries for the two TRIPLE nodes are named
D1N3 and D1N4. The query for the JOIN node is

D1N2 AS
(SELECT D1N3."::path" || D1N4."::path" || 'D1N2'
 AS "::path", D1N3."x", D1N3."_:n", D1N4."y"
 FROM D1N3, D1N4
 WHERE (D1N3."_:n" IS NULL
 OR D1N4."_:n" IS NULL
 OR D1N3."_:n" = D1N4."_:n")

This query can be considerably simplified (for example, it is deducible that D1N3."_:n" cannot be
null because it must be the value of a primary key column of the graph table). The IS NULL con-
ditions are necessary when joining the results of UNION or OPTIONAL nodes.

- 12 of 23 -

Converting SPARQL to SQL

3.3 EMPTY
EMPTY is the node generated by an empty GroupGraphPattern, or one that contains only FIL-
TERs. Let Node be an the EMPTY node. The SQL translation of an EMPTY node is

Id(DGA, Node) AS
(SELECT NodeName(DGA, Node) AS "::path"
 FROM VALUES (1))

VALUES(1) is essentially a literal for a table with one row and one column, whose value is 1. If
the SQL implementation does not support this feature of SQL, then any table known to have one
row will do.

For example, if Node6 is an EMPTY node and there is one default graph assignment, then we
have the subquery

D1N6 AS
(SELECT 'D1N6' AS "::path"
 FROM VALUES (1))

3.4 GROUP
Let Node be a GROUP node. A GROUP node corresponds to a GroupGraphPattern. In
[SPARQL to trees], I followed the suggestion that a GROUP node is the appropriate place to eval-
uate FILTERs. The non-FILTER children of a GROUP node are handled the same as for a JOIN
node. For simplicity, I assume that a GROUP has at most one non-FILTER child, which is a JOIN
node or an EMPTY node. This can be assured by slightly modifying the algorithm in [SPARQL
to trees], or by performing a preliminary pass over the tree to make it so. Let Nodejoin be the JOIN
or EMPTY node that is a child of GROUP.

Form the string

"::path" || NodeName(DGA,Node) AS "::path"

For each bindable w in the JOIN child of the GROUP node, form the string

Id(w)

A FILTER may contain bindables that are not found in Nodejoin. In that case, there will be no
bindings for such bindables. This will be handled by widening the result of the JOIN child with
additional null columns. If w is such a bindable, form the string

CAST (NULL AS CharType) AS Id(w)

Let WidenSelectList be a comma-separated list of the preceding strings. Let WidenQuery be

(SELECT WidenSelectList
 FROM Id(DGA, Nodejoin)) AS W

- 13 of 23 -

Converting SPARQL to SQL

Each FILTER node can be mapped to an SQL predicate. I have not worked out the complete
details for this mapping, contenting myself with just a sketch here. The SQL boolean value
Unknown (the same as the null value of the boolean type) corresponds to the error case in
SPARQL. The mapping of the SPARQL predicate BOUND(w) is

(Id(w) IS NOT NULL)

Other SPARQL functions and operators are mapped to functions and operators in SQL. If the
SQL function or operator F does not return null on null input, then this can be coerced by using
the expression syntax

CASE WHEN a1 IS NULL OR ... OR an IS NULL THEN NULL

ELSE F(a1, ..., an) END

Let FilterPred be the logical conjunction of the mappings of all FILTER children of the GROUP
node. If there are none, let FilterPred be 1=1.

SQ(DGA, Node) is

Id(DGA,Node) AS
(SELECT *
 FROM WidenQuery
 WHERE FilterPred)

For example,

{ ?s :v ?t FILTER (LANG(?t) = 'en') }

This example has a single default graph assignment. Let the GROUP node be Node1 and its child
JOIN node be Node2. Then we have

D1N1 AS
(SELECT *
 FROM (SELECT "::path", "s", "t"
 FROM D1N2) AS W
 WHERE LANG ("t") = 'en')

Here LANG is the SQL name of the function that implements the SPARQL function of the same
name.

3.5 OPTIONAL
If Node is an OPTIONAL node of Tree, let its first child be Nodemand (the mandatory pattern) and
its second child be Nodesupp (the supplementary pattern).

Form the character string

 Id(DGA,Nodemand)."::path"

|| CASE WHEN Id(DGA,Nodesupp)."::path" IS NULL

- 14 of 23 -

Converting SPARQL to SQL

 THEN ''
 ELSE Id(DGA,Nodesupp)."::path"

 END
|| NodeName(DGA,Node)

That is, the path of a solution from an OPTIONAL node includes the supplementary pattern’s path
only if the supplementary pattern contributed to the solution. The path always includes the man-
datory pattern’s path, as well as the node name of the OPTIONAL node itself.

For each bindable w that is in both the mandatory pattern and the supplementary pattern, form the
string

COALESCE (Id(DGA,Nodemand).Id(w), Id(DGA,Nodesupp).Id(w))

AS Id(w)

(COALESCE is an SQL operator whose result is the first operand if non-null, otherwise the sec-
ond operand.)

For each bindable w in the mandatory pattern but not in the supplementary pattern, form the string

Id(DGA,Nodemand).Id(w)

For each bindable w in the supplementary pattern but not in the mandatory pattern, form the string

Id(DGA,Nodesupp).Id(w)

Let OptionalSelectList be a comma-separated list of the preceding strings.

For each bindable w that is in both the mandatory pattern and the supplementary pattern, form the
string

(Id(DGA,Nodemand).Id(w) IS NULL

 OR Id(DGA,Nodesupp).Id(w) IS NULL

 OR Id(DGA,Nodemand).Id(w) = Id(DGA,Nodesupp).Id(w))

Let OptionalPred be the logical conjunction of the preceding predicates; if there are none, let
OptionalPred be 1=1.

SQ(DGA, Node) is

Id(DGA,Node) AS
(SELECT OptionalSelectList
 FROM Id(DGA,Nodemand) LEFT OUTER JOIN Id(DGA,Nodesupp)

 ON OptionalPred)

For example, if we change the example of a JOIN to have an OPTIONAL:

{ ?x :v1 _:n OPTIONAL { _:n :v2 ?y } }

The tree has the following nodes:

- 15 of 23 -

Converting SPARQL to SQL

Node1: the root node, a GROUP node

Node2: the OPTIONAL node

Node3: the mandatory pattern, a TRIPLE node

Node4: the supplementary pattern, a GROUP node

Node5: the child of Node4, a TRIPLE node.

There is only one default graph assignment. The queries for the two operands of OPTIONAL are
named D1N3 and D1N4. The query for the OPTIONAL node is

D1N2 AS
(SELECT D1N3."::path"
 || CASE WHEN D1N4."::path" IS NULL THEN ''
 ELSE D1N4."::path" END
 || 'D1N2' AS "::path",
 D1N3."x",
 COALESCE (D1N3."_:n", D1N4."_:n") AS "_:n",
 D1N4."y"
 FROM D1N3 LEFT OUTER JOIN D1N4
 ON (D1N3."_:n" IS NULL
 OR D1N4."_:n" IS NULL
 OR D1N3."_:n" = D1N4."_:n"))

3.6 UNION
If Node is a UNION node of Tree, let its children be Ch1, ..., Chc.

Let the bindables that appear in Node be B. Arrange these bindables in some fixed order, w1, . . .,
wb.

For each i between 1 and c, construct UnionSelectListi as a comma-separated list whose compo-
nents are:

"::path" || NodeName(DGA,Chi) AS "::path"

and

for each j between 1 and b,

if wj appears in Chi, then

Id(wj)

else

CAST (NULL AS CharType) AS Id(wj)

- 16 of 23 -

Converting SPARQL to SQL

SQ(DGA, Node) is

Id(DGA, Node) AS
(SELECT UnionSelectList1
 FROM Id(DGA,Ch1)

 UNION ALL
 . . .
 SELECT UnionSelectListc
 FROM Id(DGA,Chc)

)

For example

{ { ?x :v1 _:n } UNION { _:n :v2 ?y } }

has the following nodes:

Node1: the root GROUP node

Node2: the UNION node

Node3: the first operand of UNION, a GROUP node

Node4: the TRIPLE beneath Node3

Node5, Node6, Node7: the leaves beneath Node4

Node8: the second operand of UNION, another GROUP node

Node9: the TRIPLE beneath Node8

Node10, Node11, Node12: the leaves beneath Node9

There is only one default graph assignment. The inputs to the UNION are the subqueries named
D1N3 and D1N8. Let the bindables in this query be placed in the order ?x, _:n, ?y . The query for
the UNION is

D1N2 AS
(SELECT "::path" || 'D1N3' AS "::path",
 "x", "_:n", CAST (NULL AS CLOB) AS "y"
 FROM D1N3
 UNION ALL
 SELECT "::path" || 'D1N8' AS "::path",
 CAST (NULL AS CLOB) AS "x", "_:n", "y"
 FROM D1N8
)

using CLOB as the character type for Subject, Verb and Object columns.

- 17 of 23 -

Converting SPARQL to SQL

3.7 GRAPH
Let Node be a GRAPH node. Node has two children, the graph selector and a pattern. The sec-
ond child will always be a GROUP node; let it be Nodegroup.

I do not believe it will be possible to extend the entailment technique of pattern matching to per-
mit the scope of blank node identifiers to cross GRAPH nodes. See [Constructive mapping
semantics] section 3 “Entailment reconsidered”. Consequently I propose that the solutions of a
GRAPH node must be reduced by factoring out blank node identifiers.

Let L be an SQL character string literal whose value is DGAi(Nodegroup), that is, the IRI that is
chosen by the default graph assignment for the GROUP node beneath the GRAPH node.

Form the character string

"::path" || NodeName(DGA,Node) AS "::path"

For every variable v in Nodegroup, form the character string

Id(v)

If the graph selector s is a bindable not found in Nodegroup, form the character string

L AS Id(s)

Let GraphSelectList be a comma-separated list of the preceding character strings.

If the graph selector s is a variable and appears in Nodegroup, let GraphPred be

Id(s) = L

otherwise let GraphPred be

1=1

 then SQ(DGA, Node) is

Id(DGA, Node) AS
(SELECT DISTINCT GraphSelectList
 FROM Id(DGA, Nodegroup)

 WHERE GraphPred
)

For example, suppose there are two named graphs, with IRIs http://shenme.mingzi and
http://nin.qui.xing . The SPARQL query

{ ?g GRAPH { ?s :v _:n } }

is graphed with the following nodes:

Node1: the root node, a GROUP node

- 18 of 23 -

Converting SPARQL to SQL

Node2: the GRAPH node

Node3: the graph selector node, ?g

Node4: the second child of the GRAPH node, a GROUP node

Node5: the TRIPLE node beneath Node4

Node6, Node7, Node8: the leaves beneath Node5

There are two default graph assignments.

DGA1 assigns the default graph to Node1 and Node2, and assigns
http://shenme.mingzi to the other nodes

DGA2 assigns the default graph to Node1 and Node2, and assigns
http://nin.gui.xing to the other nodes

There are two queries generated for every node of the graph. At the GRAPH node, we have these
two queries:

D1N2 AS
(SELECT DISTINCT "::path" || 'D1N2' AS "::path",
 'http://shenme.mingzi' AS "g", "s"
 FROM D1N4
 WHERE 1=1)

and

D2N2 AS
(SELECT DISTINCT "::path" || 'D2N2' AS "::path",
 'http://nin.gui.xing' AS "g", "s"
 FROM D2N4
 WHERE 1=1)

Note that the constraint that the pattern { ?s :v _:n } must be matched within a particular
graph is handled within the previously defined queries D1N4 and D2N4. These queries are essen-
tially TRIPLE nodes, and the FROM clause in each query will reference the appropriate table
based on the default graph assignment, DGA1 in the case of D1N4 and DGA2 within D2N4.

Minor issue: this does not assure that the value of ?g is in the default graph. I am not sure whether
it is intended that in a query such as

{ ?g GRAPH { ?s :v _:n } }

that the value of ?g must match some node of the default graph. My preference is that if ?g does
not appear in a triple pattern of the default graph, then the scoping set for ?g should be the set of
graph names of named graphs, rather than the set of terms of the default graph.

- 19 of 23 -

Converting SPARQL to SQL

3.8 Root node
Let Node1 be the root node of Tree. Node1 is a GROUP node. Preceding rules have defined
SQ(DGAi, Nodej) for all default graph assignments DGAi and all nodes Nodej, including in par-
ticular SQ(DGAi, Node1).

For each variable v appearing anywhere in Tree, form the character string

Id(v)

Let FinalSelectList be a comma separated list of these strings.

Let AlmostFinalSelectList be the following:

"::path", FinalSelectList

The purpose of AlmostFinalSelectList is to project away bindings to blank node identifiers.
AlmostFinalSelectList is executed with SELECT DISTINCT, so distinctions based on the path are
retained, but distinctions between rows based only on bindings to blank node identifiers are
purged.

The purpose of FinalSelectList is to project away the "::path" column, which is generated solely
for bookkeeping. FinalSelectList is not performed with DISTINCT, so that solutions that are
found along different paths are retained. This provides the counting semantics that I have advo-
cated.

For each default graph assignment DGAi, let WithClausei be a comma-separated list of SQ(DGAi,
Nodej) for all nodes Nodej, in descending order by j. This ordering insures that each named sub-
query is defined before it is referenced.

The SQL query that solves the Tree as a whole is

WITH WithClause1, . . ., WithClaused
SELECT FinalSelectList
FROM (
 SELECT DISTINCT AlmostFinalSelectList
 FROM Id(DGA1, Node1)

 UNION ALL
 SELECT DISTINCT AlmostFinalSelectList
 FROM Id(DGA2, Node1)

 UNION ALL
 . . .
 SELECT DISTINCT AlmostFinalSelectList
 FROM Id(DGAd, Node1)

Complete example:

{ ?g GRAPH { { ?s :v1 _:n } UNION { ?s :v2 _:n }
 OPTIONAL { _:n :v3 ?t . ?t :v4 ?u } } }

- 20 of 23 -

Converting SPARQL to SQL

Tree:

Suppose there are two named graphs, which will cause two default graph assignments, which dif-
fer at node 4 and below. Let Table1 and Table2 be the tables that store the two named graphs. Let
http://shenme.difang/ be the expansion of the prefix : .

WITH
D1N15 AS /* TRIPLE { ?t :v4 ?u } */
 (SELECT 'D1N15' AS "::path",
 Subject AS "t", Object AS "u"
 FROM Table1
 WHERE Verb = 'http://shenme.difang/v4'),
D1N14 AS /* TRIPLE { _:n :v3 ?t } */
 (SELECT 'D1N14' AS "::path",
 Subject AS "_:n", Object AS "t"
 FROM Table1
 WHERE Verb = 'http://shenme.difang/v3'),
D1N13 AS /* JOIN (DIN14, D1N15) */

GROUP (1)

GRAPH (2)

?g (3) OPTIONAL (4)

UNION (5) GROUP (12)

JOIN (7) JOIN (10) TRIPLE (14) TRIPLE (15)

TRIPLE (8) TRIPLE (11) _:n :v3 ?t ?t :v4 ?u

?s :v1 _:n ?s :v2 _:n

GROUP (6) GROUP (9) JOIN (13)

- 21 of 23 -

Converting SPARQL to SQL

 (SELECT D1N14."::path" || DIN15."path"
 ||'D1N13' AS "::path",
 D1N14."_:n", D1N14."t", D1N15."u"
 FROM D1N14, D1N15
 WHERE (D1N14."t" IS NULL OR D1N15."t" IS NULL
 OR D1N14."t" = D1N15."t")
D1N12 AS /* GROUP (D1N13) */
 (SELECT *
 FROM (SELECT "::path" || 'D1N12' AS "::path",
 "_:n", "t", "u"
 FROM D1N13) AS W
 WHERE 1=1),
D1N11 AS /* TRIPLE { ?s :v2 _:n } */
 (SELECT 'D1N15' AS "::path",
 Subject AS "s", Object AS "_:n"
 FROM Table1
 WHERE Verb = 'http://shenme.difang/v2'),
D1N10 AS /* JOIN (D1N11) */
 (SELECT D1N11."::path" || 'D1N10' AS "::path",
 D1N11."s", D1N11."_:n"
 FROM D1N11
 WHERE 1=1),
D1N9 AS /* GROUP (D1N10) */
 (SELECT *
 FROM (SELECT "::path" || 'D1N10' AS "::path",
 "s", "_:n"
 FROM D1N10) AS W
 WHERE 1=1),
D1N8 AS /* TRIPLE { ?s :v1 _:n } */
 (SELECT 'D1N8' AS "::path",
 Subject AS "s", Object AS "_:n"
 FROM Table1
 WHERE Verb = 'http://shenme.difang/v1'),
D1N7 AS /* JOIN (D1N8) */
 (SELECT D1N8."::path" || 'D1N7' AS "::path",
 D1N8."s", D1N8."_:n"
 FROM D1N8
 WHERE 1=1),
D1N6 AS /* GROUP (D1N7) */
 (SELECT *
 FROM (SELECT "::path" || 'D1N10' AS "::path",
 "s", "_:n"
 FROM D1N9) AS W
 WHERE 1=1),
D1N5 AS /* UNION (D1N6, D1N9) */

- 22 of 23 -

Converting SPARQL to SQL

 (SELECT "::path" || 'D1N5' AS "::path",
 "s", "_:n"
 FROM D1N6
 UNION ALL
 SELECT "::path" || 'D1N5' AS "::path",
 "s", "_:n"
 FROM D1N9)
D1N4 AS /* OPTIONAL (D1N5, D1N12) */
 (SELECT D1N5."::path" ||
 CASE WHEN D1N12."::path" IS NULL THEN ''
 ELSE D1N12."::path" END
 || 'D1N4' AS "::path",
 D1N5."s",
 COALESCE(D1N5."_:w",D1N12."_:w") AS "_:w",
 D1N12."t", D1N12."u"
 FROM D1N5 LEFT OUTER JOIN D1N12
 ON (D1N5."_:n" IS NULL
 OR D1N12."_:n" IS NULL
 OR D1N5."_:n" = D1N12."_:n"))
/* no subquery for D1N3, it is just a variable node */
D1N2 AS /* GRAPH (?g, D1N4) */
 (SELECT DISTINCT "::path" || 'D1N2' AS "::path",
 'http://shenme.mingzi' AS "g",
 "s", "t", "u",
 FROM D1N4
 WHERE 1=1),
D1N1 AS /* GROUP (D1N2) */
 (SELECT *
 FROM (SELECT "::path" || 'D1N1' AS "::path",
 "g", "s", "t", "u"
 FROM D1N2) AS W
 WHERE 1=1)
/*
** plus subqueries D2N15 through D2N1 as clones of the
** above, with D1 changed to D2, and Table1 changed to
** Table2
*/
SELECT "g", "s", "t", "u"
FROM (SELECT DISTINCT "::path", "g", "s", "t", "u"
 FROM D1N1
 UNION ALL
 SELECT DISTINCT "::path", "g", "s", "t", "u"
 FROM D2N1)

- 23 of 23 -

Converting SPARQL to SQL

- End of paper -

	1. Introduction
	2. Preliminaries
	2.1 Terminology
	2.2 Font conventions
	2.3 Graphs
	2.4 Blank nodes in graphs
	2.5 Default graph assignment
	2.6 Overall structure of the generated SQL query
	2.7 Node numbering
	2.8 Node names
	2.9 SQL identifiers
	2.10 Paths
	2.11 Solution tables
	2.12 Glossary of symbols

	3. Transformation of nodes to SQL subqueries
	3.1 TRIPLE
	3.2 JOIN
	3.3 EMPTY
	3.4 GROUP
	3.5 OPTIONAL
	3.6 UNION
	3.7 GRAPH
	3.8 Root node

